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We have found in [1] the permanent rotations of a rigid body with a fixed

point in the force fleld of Goriachev. We investigate here the stabllity
of such rotations,

1, We shall determine the. position of a rigid body with a fixed point ¢
by the direction-coslnes (a,, B,, y,) of the angles between the axes x, x,xs
of the moving coordinate system fixed in the body and the nonmoving coordi-
nate system en{ . Here ¢ = 1, 2, 3. The components of the angular velo-~
city along the moving axes will be denoted by p, , the directlon cosines of
the permanent axis by 1, , {with respect to moving axes) and the principal
moments of inertia with respect to the moving axes by 4,. Let us consider

the rigid body (in which A= Ag= 24,), acted on by forces whose potential
has the form

U, Yo Ts) =a(m— D70 4 100 (122 — 112 — Tt — 6T (1.1)

which corresponds to the attraction of four polints of the body [la by the
fixed plane £n according to the above formula. It is shown in [1] that
the permanent axes move with a constant angular velocity through the arcs
4,8, and A3S; if n 1s odd and through the arcs 4,5, and 4,'S,’ when »
18 even. These spherlcal arcs are the intersectlons of two surfaces

12+ 1,2+ 12 =1, ealy — ¢yla — 2051, = 0 (1.2)

with the perpendicular plane gn (see Fig. in %1]). The points S,, S, and
S,’ correspond to the position of equilibrium (w = 0), and 4,, 45, 47 deter-
mine the rotation with the angular velocity o®= «» , which foilows from Equa-
tions [1]
(0 + Yq0%) Ll 4 alyly™ — cls = (6 — Y50 Ly — alily™ + ¢)l3 =0 (1.3)

We shall investigate the stabllity of the considered permanent axes with
respect to the quantities p, and vy, . The components of the angular velo-
city of the body along the axes, moving with the body are

Pio = Wl (1.4)

In the perturbed motion we set

i = pio+ & Ti=h+ M (1.5

The equations of the perturbed motion have the following first integrals:
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3 3
Vi= 2 (42 + 24;piofs — 28m5) — D) agnim; + O (&P ) = const
i=1 i, j==1
3 3
Vo= ) 4; (pig + L& + &) = const, Vy= 3 2+ 2Umy) = 0
i=1 i=1

(1.6)

where
a; = (8U / 3‘1’i)\-i=1i, ay; == (3*U / 3&31’;’)?5 I

We shall construct the Liapunov function using the method of Chetsev [ 2]
in the form of a linear combination of integrals (1.6)
V=V, — 20V, + AV,
Here the constant A has the form
- o Y 83 a3 —
A= A,0% + T = 4,0 -} 1, = Azw? - T
©:

& -
zA1m2~b-——l—i—=-A,m2+b-—§=Asm%—azs“1 .7

v(uii%x zomes from Euler's equations. The function vy under the conditions
. 8
3
V=2 [4:&2 — 204:8m; + A — a) 12 — 2 D)) agmen; + 0 B2 w®) (1.8)
i==1 iz5]
It is obvious that the function J 4is positive definite with respect to

g, and 1, , if its quadratic part, that is v = 0(eg,®, n,®) 4is positive
defiinite, -

By the Sylvester c¢riterion the necessary and sufficient conditions for
sign definiteness of this form are the inequalities

A —ay — 4,0 >0, (A — ayy — Ay)0%) A — a3 — 4,07 — a1,* >0
3 3
IT 0 —asi — 40 — ) O — a5 — 407 a5 515 — 20120150250
i=1 i=1
For the function (1.1) these conditions become
— ally >0, — ¢/ 1, >0, — (4 Daly ™1t >0 (1.9)

Under the conditions (1.9) the function ¥ is the sign-definite integral
of the equations of the perturbed motion, and by Liapunov's theorem on the
stability, the nonperturbed motion (1.4) will be stable with respect to the
variables p, and vy, .

The points on the src A4,’5.’ satisfy the sufficient conditions (1.9) and
the arc is admissidble when »n 1is even.

We can show some unstable permanent axes when considering the linearized
syastem of equations of the perturbed motion, where the theims of second and
higher orders are neglected (with respect to the perturbatlons in the equa-
tions of the perturbed motion). The characteristic equation of the system

has the form 0 (0t + £,0% + g) = O (1.10)

g = (1 + Ys?) 02 — 1 (5bly + 3¢;) — 315 (g — 5/3bly) — als™™ ! (212 + nly? + nlyf)
The expression for g, is not shown because it 1s too compllicated.
The instakdlity of the motion (1.4} occurs when the following inequalities
are satisfled [ 3]
7n <o, 82 <0, g2 —4ge <20

For example, when the constants 4, », ¢, (shown in Fig. in [1]) are
positive, then the inequality c, > 2bl, is satisfied. This follows from the
construction of the branch of hyperbola {1.2) which passes through the ori=-
gin. And then, obviously, ¢, >>5/;bl,. Besldes, on the admlssible arcs 4,5,
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and A,Sy we have 1,>0 and 1;> 0 . Consequently, the second and the
third terms in (1.10) will be negative. For the positive values o. n the
term containing ¢ in (l.lO% wlll be negative, because 13> O on the arc
4,5 , and the arc 4,;S; wlll be admissible when n 1s odd.

Then the positdons of equilibrium w = O determined by the points S5, and
Sy wlll be unstable, since here g.< O . The permanent axes passing %hrough
points near S, and S, will be unstable, The finite points of unstable arcs
are determined by the values of ® which make ¢, vanish.

2, Let a symmetrical body (,4,- Ag) be placed in the force fleld
U=ad,/(n— 1) 71" (n#1, a>0

The permanent axes with a constant velocity of rotation about them coin-
cide with the ( axis, and there are two such axes [1]

L#0, 1,50, P=a/(@E—1) ", e=A3/4 2.1y
L=10=0 =1, ® 1s an arbitrary (2.2)

We shall show now when the rotations (2.1) are unstable. The equations
of the perturbed motion in this case are

(— Dk Ey = (e — D o [I; Eap — 0Ma_y) + sy (Es -+ nomy)] + 0 (8% ni%)

N = L (Eire — 0ns2) — Lz Ginn — 0Mn) + O (§3m:%) (2.3)
£E,'=0 k=1,2; i=1,2,3)
The characteristic equation of the linearized form of the system (2.3) 1s
t?+ g =0

g= m"’la"{[e——g-(-l:—z—i)——Z]z——(7:—2-—1)[%2*({?‘—1)4—"—1]}

By the Liapunov's theorem on instability in the first approxlmation the
unperturbed motion (2.1) 1s unstable when ¢ < O .

When n = 0 (the case of Lagrange) the insta-
b1lity of the rotational motions (2.1) cannot be
established from the characteristic equation of
the linearized system. .But when

2n>(1+ﬁ)'l, 2n<(1—”13|)‘1

we have two real values
e1,82 = Yon (1372 — 1) +
+ 2 {2 — 1) [Yen? (I — 1) + n — 1]}
and when ¢,< ¢ < e, , the unperturbed mot.on
(2.1) is unstable. Notice that when ¢ > O,
and the separation of the unstable motions (2,1)

depends on the existence of ¢;> O . This takes
place for example under the conditlons

2(1—g) <3 <(t= )

It is interesting that we can show the stability with respect to 8 and
p*(cos 6my,) when g > O by using Routh's theorem [4].

By the integrals (1.6) and also by the integral V,= £,= const , we can
obtain the followlng condition for the stabllity of rotations (2.15 with
respect to py and vy,

Using Rumiantsev's method [5] we shall construct the Liapunov function
V=V —20V,+ o¥;+ euV? = (§; — ony)? +
+ (B — oM + (14 ) eb2 — 2w, + 02 (1 — n (e — 1) I2]1n%+ 0 G ) (2.49)
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The constant 4 > O ocan be chosen such, that the quadratic part of the
function (2.4) will be positive definite with respect to £, and =n, Aif

1—nE—1)12>0 (2.5)

Then by the theorem of stability with respect to some of the variables(5
ghe unpergurbed motion (2.1) under the condition (2.5) 1s stable with respec
O Py &nd vys .

The necessity of the sufficiency of the condition for the stability of
motion (2.2) in the form
£20? > 4a (2.6)

can be ?roved by constructing the Liapunov function as the combination of
Chetaev's integrals [ 2]

V=Vi4 2W, — (a + eod) Vg + pV @ — 2 (g0 + e\ V,

and taking as the Chetaev function W = §my — EMe or using the condition
of stability of rotations (2.2) obtained by Beletskii [6] for the force
function U = U(ys) .

3. If the points of the rigid body are attracied by the stationary plane
in proportionally to the distance from this plane, then the force function.
8 = — I/SgEAm" and in the case of a dynamically syvmmetrical rigid body

(4= 45) 1t takes the form U = — Y/, (4; — A,) T2 + const, We shall have
then the particular case of rotations (2,1) about the perpendicular line in
the plane &n

a=n(e—1), n= —1, 0= (3.1)

The sufficient condition of stability (2.5) for these rotations takes the
form

1 — I+ el2>0 (3.2)

When 128< 1 the conditions (3.2) are always satisfied, therefore the
stability of the considered rotations occurs at any position of the body
with respect to the perpendicular line in the plane in « The sufficient
conditions derived by Pozharitskil [7] allow to select only some stable
motions (3.1).

4, We shall consider rotation of a symmetric rigid body acted on by a
force which 18 constant in the moving coordinate system [1]. The body rotates
about an axis which intersects this force, and we shall investigate the sta-
bility of this rotation with respect to the variables P, . Equations of the
perturbed motion

(=¥ = (& — 1) (p2+kbrt1 — prarbksa 4 Ekvibrsee), Eo =0 k=1, 2) (41)
have the general solution
Ei=asin(Qt+ @) —bpyo b + pa)™t,  Ey = a cos (R + @) — bpg (¢ + pao)™?
Es=b Q=01 —2 G-+ py (a, b, @ = const) (4.2)
From (%.2) follows that the considered rotation is stable when b == — p,,.

5. If the points of & rigid body are attracted by the plane £{ and are
repulsed by the plane n{ and the attraction is proportional to the distance
from these planes then the force function is [8]

2U = p [A1(Br? — a?) + Aa(Ba? — ag?) 4 As(Bs* — %5%)] (5.4)

The Euler-Poisson equations show that the permanent exis with the constant
angular velocity of rotation exists in a symmertical body and it coincides
with the (¢ -axis,

The force function can be transformed into
2U = p (A3 — 4y) @2 —ad) (5.2)
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which means that it depends only on the cosines of the angles between the
axls of symmetry of the body and the fixed axes € and 7 . We shall
Investigate the stabllity of thid rotation. Tonsldering the motlon of the

body 1in the variables p,, ay, By, vy, the equations of the perturbed motion
which we obtain from the Euler-Poisson equations contain periodic functions,

and the investigatlon of these equations even in the first approximation
becomes difficult.

The problem simpllfles, 1f the x,-axls remains as before, while the x
and x, axes are arbitrarily located in the equatorial plane of the ellipsoid
of inertia of the body and are not fixed in the body. The quantities q,
and B, remaln as before.

The position of the axls of symmery of the body xs; is determlned by the
angle a between its projJection I on the En plane and the (-axis (see
Fig.l) and the angle g between the projection I and the xq~axis itself.
The amount of rotation of the body about the xy-axis is denoted by the
angle ¢ . The angles o, B, ® are the holonomic coordinates of the con-
sidered mechanical system. As a matter of fact, 1f we rotate the gn{ system
about the n~ axis by the angle o it will occupy the position of the sys=-
tem x,nI, and if we rotate the last system by the angle g about the x; -
axls 1% will occupy the positlon of the moving system x, x,x, . Rotating
the rigild body about the x,-axis by the angle ¢ we obtain’ the given posi-
tion of the body. By the well known theorem of analytic geometry on the
cosline of an angle between two lines 1n space we have that

o3 = cos 2§ = sinacos B, Py = cos xsh = — sin P
From the proof that the ¢, B, ¢ coordinates are holonomlc follows that
the components of the angular veloclity of rotation of the body along the
moving axes are
plzﬁ-v P2:0‘. COS& Psch' —a’ Sinﬁ
Then the expression for the Lagrange function has the form

L=T- U =14, @?cos? p -+ P2) - /o4, (¢ — a sin B)* -+
+ You (43 — +1) (sin? B — sin? a cos? P)

The coordinate ¢ being cyclic corresponds to the following integral of
the Lagrange equations

Al / 8¢" = Ayr, = Ay (¢° — a’ sin B)
Ignoring the cycllic coordin.ces we obtain the equation in the Lagrange
form with the Routh function
=1/,A, (@2 cos2 P -+ B2 -+ Vedgre? -+ Uon (A5 — A,) (sin? fp — sin? a cos? f) —
— Agrg (rg + o sin B)
These equations do not contain the variable o
A0 cos P — 24,0°B° sin p — AgrPT = — p(dg — Ay sino cosa cos f
AP+ A0 2 sin B cos P -+ Agra” cos B = p (Ay — A,) (1 -+ sin? @) sin P cos B (5.3)
This permanent rotatlion leads to the following solutlon of the Equations
(5.3) o—p—a =p =0, ¢ = ro (5.4)
In the perturbed motion we set
=a, Pp=p o =o, =
Then the equations with variations have the form
A0 A p (4 — Ay o — Agrf” =0, AP —u (A5 — A B+ Agrd” =0 (5.5)

The characteristic equation of the system (5.5) 1is
A0t - Agr2o? —pd(4y — 42 =10



Stabllity of certain permanent rotations of a rigid body 431

It always has positive roots, and, according to Liapunov's theorem on the
1nstabilitx in the first approximation, we deduce the instability of the
motion (5.4).

The author expresses hils gratitude to V.V. Rumiantsev for his interest
in this work.
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